Additive Models for Quantile Regression: Some New Methods for R
نویسنده
چکیده
This brief report describes some recent developments of the R quantreg package to incorporate methods for additive models. The methods are illustrated with an application to modeling childhood malnutrition in India. Models with additive nonparametric effects offer a valuable dimension reduction device throughout applied statistics. In this paper we describe some recent developments of additive models for quantile regression. These methods employ the total variation smoothing penalties introduced in Koenker, Ng, and Portnoy (1994) for univariate components and Koenker and Mizera (2004) for bivariate components. We focus on selection of smoothing parameters including lasso-type selection of parametric components, and on post selection inference methods. Additive models have received considerable attention since their introduction by Hastie and Tibshirani (1986, 1990). They provide a pragmatic approach to nonparametric regression modeling; by restricting nonparametric components to be composed of low-dimensional additive pieces we can circumvent some of the worst aspects of the notorious curse of dimensionality. It should be emphasized that we use the word “circumvent’ advisedly, in full recognition that we have only swept difficulties under the rug by the assumption of additivity. When conditions for additivity are violated there will obviously be a price to pay. 1. Additive Models for Quantile Regression Our approach to additive models for quantile regression and especially our implementation of methods in R is heavily influenced by Wood (2006, 2009) . In some fundamental respects the approaches are quite distinct: Gaussian likelihood is replaced by (Laplacean) quantile fidelity, squared L2 norms as measures of the roughness of fitted functions are replaced by corresponding L1 norms measuring total variation, and truncated basis expansions are supplanted by sparse algebra as a computational expedient. But in other respects the structure of the models is quite similar. We will consider models for conditional quantiles of the general form: Version: September 5, 2009. This research was partially supported by NSF grant SES-08-50060. I would like to express my appreciation to Ying Li for excellent research assistance. All of the methods described below have been implemented in version 4.42 of the quantreg package for R, Koenker (2009).
منابع مشابه
Additive Models for Quantile Regression
We describe some recent development of nonparametric methods for estimating conditional quantile functions using additive models with total variation roughness penalties. We focus attention primarily on selection of smoothing parameters and on the con
متن کاملNonparametric Estimation of an Additive Quantile Regression Model
This paper is concerned with estimating the additive components of a nonparametric additive quantile regression model. We develop an estimator that is asymptotically normally distributed with a rate of convergence in probability of n−r/(2r+1) when the additive components are r-times continuously differentiable for some r ≥ 2. This result holds regardless of the dimension of the covariates and, ...
متن کاملBayesian Nonparametric Modeling in Quantile Regression
We propose Bayesian nonparametric methodology for quantile regression modeling. In particular, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed nonparametric prior probability models allow the data to drive the shape of the error density and thus provide more reliable predictive inference than models based on par...
متن کاملDependence of Default Probability and Recovery Rate in Structural Credit Risk Models: Empirical Evidence from Greece
The main idea of this paper is to study the dependence between the probability of default and the recovery rate on credit portfolio and to seek empirically this relationship. We examine the dependence between PD and RR by theoretical approach. For the empirically methodology, we use the bootstrapped quantile regression and the simultaneous quantile regression. These methods allow to determinate...
متن کاملDetection of risk factors for obesity in early childhood with quantile regression methods for longitudinal data
This article compares and discusses three different statistical methods for investigating risk factors for overweight and obesity in early childhood by means of the LISA study, a recent German birth cohort study with 3097 children. Since the definition of overweight and obesity is typically based on upper quantiles (90% and 97%) of the age specific body mass index (BMI) distribution, our aim wa...
متن کامل